216 research outputs found

    The random geometry of equilibrium phases

    Full text link
    This is a (long) survey about applications of percolation theory in equilibrium statistical mechanics. The chapters are as follows: 1. Introduction 2. Equilibrium phases 3. Some models 4. Coupling and stochastic domination 5. Percolation 6. Random-cluster representations 7. Uniqueness and exponential mixing from non-percolation 8. Phase transition and percolation 9. Random interactions 10. Continuum modelsComment: 118 pages. Addresses: [email protected] http://www.mathematik.uni-muenchen.de/~georgii.html [email protected] http://www.math.chalmers.se/~olleh [email protected]

    Proof of a conjecture of N. Konno for the 1D contact process

    Get PDF
    Consider the one-dimensional contact process. About ten years ago, N. Konno stated the conjecture that, for all positive integers n,mn,m, the upper invariant measure has the following property: Conditioned on the event that OO is infected, the events {\{All sites −n,...,−1-n,...,-1 are healthy}\} and {\{All sites 1,...,m1,...,m are healthy}\} are negatively correlated. We prove (a stronger version of) this conjecture, and explain that in some sense it is a dual version of the planar case of one of our results in \citeBHK.Comment: Published at http://dx.doi.org/10.1214/074921706000000031 in the IMS Lecture Notes--Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Critical percolation of free product of groups

    Full text link
    In this article we study percolation on the Cayley graph of a free product of groups. The critical probability pcp_c of a free product G1∗G2∗...∗GnG_1*G_2*...*G_n of groups is found as a solution of an equation involving only the expected subcritical cluster size of factor groups G1,G2,...,GnG_1,G_2,...,G_n. For finite groups these equations are polynomial and can be explicitly written down. The expected subcritical cluster size of the free product is also found in terms of the subcritical cluster sizes of the factors. In particular, we prove that pcp_c for the Cayley graph of the modular group PSL2(Z)\hbox{PSL}_2(\mathbb Z) (with the standard generators) is .5199....5199..., the unique root of the polynomial 2p5−6p4+2p3+4p2−12p^5-6p^4+2p^3+4p^2-1 in the interval (0,1)(0,1). In the case when groups GiG_i can be "well approximated" by a sequence of quotient groups, we show that the critical probabilities of the free product of these approximations converge to the critical probability of G1∗G2∗...∗GnG_1*G_2*...*G_n and the speed of convergence is exponential. Thus for residually finite groups, for example, one can restrict oneself to the case when each free factor is finite. We show that the critical point, introduced by Schonmann, pexpp_{\mathrm{exp}} of the free product is just the minimum of pexpp_{\mathrm{exp}} for the factors

    Some conditional correlation inequalities for percolation and related processes

    Get PDF
    Consider ordinary bond percolation on a finite or countably infinite graph. Let s, t, a and b be vertices. An earlier paper proved the (nonintuitive) result that, conditioned on the event that there is no open path from s to t, the two events ``there is an open path from s to a' and ``there is an open path from s to b' are positively correlated. In the present paper we further investigate and generalize the theorem of which this result was a consequence. This leads to results saying, informally, that, with the above conditioning, the open cluster of s is conditionally positively (self-)associated and that it is conditionally negatively correlated with the open cluster of t. We also present analogues of some of our results for (a) random-cluster measures, and (b) directed percolation and contact processes, and observe that the latter lead to improvements of some of the results in a paper of Belitsky, Ferrari, Konno and Liggett (1997

    Handling Markov Chains with Membrane Computing

    Get PDF
    In this paper we approach the problem of computing the n–th power of the transition matrix of an arbitrary Markov chain through membrane computing. The proposed solution is described in a semi–uniform way in the framework of P systems with external output. The amount of resources required in the construction is polynomial in the number of states of the Markov chain and in the power. The time of execution is linear in the power and is independent of the number of states involved in the Markov chain.Ministerio de Educación y Ciencia TIN2005-09345-C04-0

    Percolation in invariant Poisson graphs with i.i.d. degrees

    Full text link
    Let each point of a homogeneous Poisson process in R^d independently be equipped with a random number of stubs (half-edges) according to a given probability distribution mu on the positive integers. We consider translation-invariant schemes for perfectly matching the stubs to obtain a simple graph with degree distribution mu. Leaving aside degenerate cases, we prove that for any mu there exist schemes that give only finite components as well as schemes that give infinite components. For a particular matching scheme that is a natural extension of Gale-Shapley stable marriage, we give sufficient conditions on mu for the absence and presence of infinite components

    Convergence towards an asymptotic shape in first-passage percolation on cone-like subgraphs of the integer lattice

    Full text link
    In first-passage percolation on the integer lattice, the Shape Theorem provides precise conditions for convergence of the set of sites reachable within a given time from the origin, once rescaled, to a compact and convex limiting shape. Here, we address convergence towards an asymptotic shape for cone-like subgraphs of the Zd\Z^d lattice, where d≄2d\ge2. In particular, we identify the asymptotic shapes associated to these graphs as restrictions of the asymptotic shape of the lattice. Apart from providing necessary and sufficient conditions for LpL^p- and almost sure convergence towards this shape, we investigate also stronger notions such as complete convergence and stability with respect to a dynamically evolving environment.Comment: 23 pages. Together with arXiv:1305.6260, this version replaces the old. The main results have been strengthened and an earlier error in the statement corrected. To appear in J. Theoret. Proba

    Developments in perfect simulation of Gibbs measures through a new result for the extinction of Galton-Watson-like processes

    Full text link
    This paper deals with the problem of perfect sampling from a Gibbs measure with infinite range interactions. We present some sufficient conditions for the extinction of processes which are like supermartingales when large values are taken. This result has deep consequences on perfect simulation, showing that local modifications on the interactions of a model do not affect simulability. We also pose the question to optimize over a class of sequences of sets that influence the sufficient condition for the perfect simulation of the Gibbs measure. We completely solve this question both for the long range Ising models and for the spin models with finite range interactions.Comment: 28 page

    A combinatorial approach to jumping particles II: general boundary conditions

    No full text
    International audienceWe consider a model of particles jumping on a row, the TASEP. From the point of view of combinatorics a remarkable feauture of this Markov chain is that Catalan numbers are involved in several entries of its stationary distribution. In a companion paper, we gave a combinatorial interpretaion and a simple proof of these observations in the simplest case where the particles enter, jump and exit at the same rate. In this paper we show how to deal with general rates
    • 

    corecore